Search Results

43 sonuç bulundu

    Blog Yazıları (25)
    • Atatürk ve Matematik

      10 Kasım Atatürk'ü anlamak için sadece savaş alanındaki dehasını yada devlet yaratma ve biçimlendirme becerisini konuşmak, okumak yetmez. Onun bilime ve eğitime verdiği değeri ve ülkemizin yeni nesillerinden beklentilerini anlamak da çok önemli. Bunu yaparken onun düşüncelerini ve fikirleri oluşturan deneyimlerini ve araştırmalarını, modern Türkiye'yi kurma amacıyla hangi kaynaklardan yararlandığını bilmek ve bu kaynaklara ulaşabilmek, onu anlamak yolunda ilk adım olabilir. Atatürk'ün hayatı boyunca 4000 kitaptan fazlasını okuduğunu biliyoruz. Atatürk'ün okuduğu kitapların, 1741'inin Çankaya Köşkü, 2151'nin Anıtkabir, 102'sinin İstanbul Üniversitesi Kütüphanesi ve 3'ünün ise Samsun İl Halk Kütüphanesi'nde olduğu biliniyor. Sadi Borak tarafından yazılan kısa metinde, Atatürk'ün bu kitapları okurken aldığı notlar şu şekilde açıklanmış; Bu 10 Kasım'da, O'nun fikirlerinin temellerini oluşturan kitaplara bir göz atalım. Bu kitapları okumak, onu anlamak yolunda, başkalarının fikirlerini dinlemek yerine atabileceğimiz en somut adım olacaktır. Aşağıdaki interaktif Google sınıfını buradan indirip, linklere ve videolara ulaşabilirsiniz. 23 Nisan Yakında .. 19 Mayıs Yakında .. 29 Ekim Yakında ..

    • FLEXTANGLES

      Flextangles are paper models with hidden faces. They were originally created by the mathematician "Arthur Stone" in 1939 and became famous when Martin Gardner published them in December 1956 issue of The Scientific American. Although you can find many different examples and ready to use templates on the web, the best method is to create your own template by using an interactive geometry software like GeoGebra. As a class activity creating flextangles by using a software can lead to discussions about translation and reflection. Flextangles, gizli yüzleri ortaya çıkarmak için esnetilebilen kağıt modellerdir. İlk olarak 1939'da Matematikçi Arthur Stone tarafından yaratılan flextangles, Martin Gardner'ın 1956 Aralık ayında The Scientific American'da yayınladığı makalede yeralınca, ünlü hale geldi. Webde bir çok örneğini ve taslak çizimlerini bulabileceğiniz flextangles için, GeoGebra gibi herhangi gibi geometri programı kullanarak kendi tasarımlarınızı da yaratabilirsiniz. Flextangle ları bir sınıf aktivitesi olarak program yardımıyla tasarladığınızda öteleme ve yansıma konularında da pratik sağlıyor. Ready to use Templates / Kullanıma Hazır Taslaklar: ------ ------ ------

    • Net of a Sphere, Different Map Projections, anda library in Milan, Italy

      Veneranda Biblioteca Ambrosiana Milano, Italy I have discovered a library while I was making my research about the lesson on spheres. We know that it is not possible to draw the net of a sphere like cylinders, cones or polyhedra. That's why it is not easy to map our our spherical world on a 2D paper. There are many different projections to map the world. You can try the interactive of Mathigon to see a few of these projections and how they distort the real size and places of the continents. https://mathigon.org/course/circles/spheres-cones-cylinders Many Mathematicians tried to converge the sphere as different polyhedra so that by using their nets, they could draw the maps. For instance, Buckminster Fuller designed his map by using triangles since he uses an icosahedron ( A Platonic Solid with 20 triangular faces) as the main shape of our world. This projection style is called Dymaxion (Fuller) projection - For the image and related article: https://en.wikipedia.org/wiki/Dymaxion_map One of the most famous polymath of the human history, Leonardo Da Vinci, used eight congruent Reuleaux Triangles* as the net of the sphere. Octant projection (1514), Leonardo da Vinci - For the image and related article: https://en.wikipedia.org/wiki/Leonardo%27s_world_map *A Reuleaux triangle is a shape formed from the intersection of three circular disks, each having its center on the boundary of the other two. Its boundary is a curve of constant width, the simplest and best known such curve other than the circle itself Codex Atlanticus is the name of the Da Vinci's notebook that includes this and many other drawings. To see the collection of all his notebooks, please visit https://www.discoveringdavinci.com/codexes According to the newsi Bill Gates purchased one of these books "Codex Leicester" for 30 million dollars. The notebook that we are looking for is “Codex Atlanticus” and it is original pages are in this little library in Milano Ambrosiana Library. The official website of the library and the art gallery: https://www.ambrosiana.it/en/ You may visit the Ambrosiana Library virtually with the help of Google Arts and Culture. The better news is that we can find this 1119 page - notebook online and categorized as algebra, geometry, physics, natural sciences and etc ... The online platform where you can find Codex Atlanticus is; http://codex-atlanticus.it/#/Overview Another reason that this library is a sacred place for the mathematicians is it also has the original copy of “Divina proportione” by Luca Pacioli. Leonardo's drawings are probably the first illustrations of skeletonic solids which allowed an easy distinction between front and back. For the Platonic solids, Da Vinci supplied two views: a plane view and a “vacua” or empty view where he removed the sides to better reveal the complete structure of the polyhedron. These “nets” of vertices and edges illustrate the artist’s graphic genius. Skeletonic solids Image: https://sciencemeetsfaith.wordpress.com/2019/12/14/luca-pacioli-golden-ratios/ Divina proportione

    Hepsini Görüntüle
    Sayfalar (18)
    • Math & Magic | MATH FAN

      MATH & MAGIC Easy tricks that you can amaze your friend and students The Famous Mystery Calculator Trick Ask your friend to choose a number [1-63]. Show them each card in turn and ask them if their number appears on it. here ​ You can guess the number by adding the top left corner numbers of each card that has their number. Can you find the trick? The first hint is if you have one more card, your friend can pick a number [1 - 127] Can you guess it now? ​ Another hint is 1 appears only on the first of the cards and 63 appears on them all. ​ ​ ... Yes, It is the Binary way of writing the number - each card is the binary digit represented by the top left corner number. (Cards are not in exact order to create the mystery!) ​ 63 = (1 + 4 + 16 + 2 + 8 + 32) 1 1 1 1 1 1 (in all 6 cards) 23 = (1 + 4 +16 + 2) so only in first four cards. ​ ​ ​

    • Optical Illusions | MATH FAN

      HOW MATH HELPS TO CREATE ILLUSIONS? Click here to view the interactive illusion exhibit where you can try the illusions on your own!

    • Lessons | MATH FAN

      FUN MATHFAN LESSONS NUMBERS NUMBER SUMS PRIMES Pi RECURRING DECIMALS BINARY SYSTEMS EXPONENTIAL GROWTH COMPLEX NUMBERS GEOMETRY CONSTRUCTIONS WITH CIRCLES A CLOSER LOOK TO CUBE PLATONIC SOLIDS ANTI-PRISMS SHAPES W/ CONSTANT WIDTH ARCHIMEDES I - II - III 4TH DIMENSIONAL CUBE MORE... INFINITY TOPOLOGY GRAPH THEORY OPTICAL ILLUSIONS STATISTICS PYTHAGORAS PASCAL TRIANGLE CRYPTOLOGY ALGORITHMS LEONARDO DA VINCI MATH & ART SPIROGRAPHS CURVES OF PURSUIT TESSELLATION IMPOSSIBLE SHAPES VEDIC MATHEMATICS STRING ART CYLINDRICAL MIRROR AMBIGIOUS SHAPES FRACTALS ORIGAMI IN SPACE X TABLE BRIDGES

    Hepsini Görüntüle
zjHl2lgef9cYrQL0JFa7kzbw2vuGqxZNnR7N3z59OXdE9g5shnN1i...png

Math Revolution at Schools


This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

©2020 by MATH FAN. Proudly created with Wix.com

  • Twitter
  • Linkedin

@edaydemir